
ResTune: Resource Oriented Tuning Boosted by Meta-Learning
for Cloud Databases

Xinyi Zhang
∗†‡

Peking University &

Alibaba Group

zhang_xinyi@pku.edu.cn

Hong Wu
∗‡

Alibaba Group

hong.wu@alibaba-inc.com

Zhuo Chang
‡§

Alibaba Group & Peking

University

z.chang@pku.edu.cn

Shuowei Jin
‡

Alibaba Group

shuowei.jsw@alibaba-

inc.com

Jian Tan
‡

Alibaba Group

j.tan@alibaba-inc.com

Feifei Li
‡

Alibaba Group

lifeifei@alibaba-inc.com

Tieying Zhang
‡

Alibaba Group

tieying.zhang@alibaba-

inc.com

Bin Cui
†§¶

Peking University

bin.cui@pku.edu.cn

ABSTRACT
Modern database management systems (DBMS) contain tens to

hundreds of critical performance tuning knobs that determine the

system runtime behaviors. To reduce the total cost of ownership,

cloud database providers put in drastic effort to automatically opti-

mize the resource utilization by tuning these knobs. There are two

challenges. First, the tuning system should always abide by the ser-

vice level agreement (SLA) while optimizing the resource utilization,

which imposes strict constrains on the tuning process. Second, the

tuning time should be reasonably acceptable since time-consuming

tuning is not practical for production and online troubleshooting.

In this paper, we design ResTune to automatically optimize

the resource utilization without violating SLA constraints on the

throughput and latency requirements. ResTune leverages the tun-

ing experience from the history tasks and transfers the accumulated

knowledge to accelerate the tuning process of the new tasks. The

prior knowledge is represented from historical tuning tasks through

an ensemble model. The model learns the similarity between the

historical workloads and the target, which significantly reduces

the tuning time by a meta-learning based approach. ResTune can

efficiently handle different workloads and various hardware en-

vironments. We perform evaluations using benchmarks and real

world workloads on different types of resources. The results show

that, compared with the manually tuned configurations, ResTune

∗
Xinyi Zhang and Hong Wu contribute equally to this paper.

†
Center for Data Science, Peking University & National Engineering Laboratory for

Big Data Analysis and Applications

‡
Database and Storage Laboratory, Damo Academy, Alibaba Group

§
School of EECS & Key Laboratory of High Confidence Software Technologies, Peking

University

¶
Institute of Computational Social Science, Peking University (Qingdao)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457291

reduces 65%, 87%, 39% of CPU utilization, I/O and memory on av-

erage, respectively. Compared with the state-of-the-art methods,

ResTune finds better configurations with up to ∼ 18× speedups.

CCS CONCEPTS
• Information systems→Autonomous database administra-
tion; • Computing methodologies → Machine learning.

KEYWORDS
resource; tuning; cloud database; service level agreement

ACM Reference Format:
Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li,

Tieying Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning

Boosted by Meta-Learning for Cloud Databases. In Proceedings of the 2021
International Conference on Management of Data (SIGMOD ’21), June 20–
25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3448016.3457291

1 INTRODUCTION
Tuning configuration knobs of modern database management sys-

tems (DBMS) is critical for system performance, albeit challenging.

Different knobs directly affect the running database performance

and jointly determine the quality of service and the resource uti-

lization of DBMS. As a common practice, to apply an appropriate

configuration for a given workload, database administrators (DBAs)

are responsible for tuning these knobs based on experience. How-

ever, in a cloud environment, manually tuning possibly tens to

hundreds of controlling knobs do not guarantee the performance

across various workloads and could not scale. Therefore, automatic

tuning becomes an appealing feature for cloud providers.

On one hand, optimizing the system performance (e.g., through-

put, latency) is critical to improving users’ experience. On the other

hand, controlling the resource utilization is a necessity from the

cloud provider’s perspective, due to the following reasons. First,

one of the goals of using cloud databases is to reduce the Total Cost

of Ownership (TCO). Maintaining a low cost is an important eco-

nomic factor to attract users, which urges to more efficiently utilize

the available computing resources. Second, optimizing computing

resources such as CPU, memory, and I/O helps troubleshoot perfor-

mance bugs that cause unnecessary high utilization. High resource

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2102

https://doi.org/10.1145/3448016.3457291
https://doi.org/10.1145/3448016.3457291
https://doi.org/10.1145/3448016.3457291
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3448016.3457291&domain=pdf&date_stamp=2021-06-18

0
17

24
34

48
51

72
68

96
86

20

sync_spin_loops

1
1413
2825
4237
5650
7062
8474
9886

ta
bl

e_
op

en
_c

ac
he

Throughput (txn/sec)

0
17

24
34

48
51

72
68

96
86

20

sync_spin_loops

1
1413
2825
4237
5650
7062
8474
9886

ta
bl

e_
op

en
_c

ac
he

CPU Utilization (%)

5K
6K
7K
8K
9K
10K

15
30
45
60
75
90

Figure 1: TPS and CPU Usage for Real Workload with 2 Knobs

utilization often leads to unpredictable system hangs and resource

contentions in a shared or multi-tenant environment [9, 20]. For

example, high CPU utilization is a frequent issue that affects the

availability of cloud databases [2]. Third, the throughput of real

workloads is often bounded by the request rate determined by

the clients. Thus, the request rates do not necessarily reach the

processing capacity of DBMS. For these common application sce-

narios, squeezing more throughput from the capacity is not the

goal. Meanwhile, controlling resource utilization is more valuable

for end-users, which can help them to choose appropriate cloud

instance types and to further avoid over-provisioning.

One challenge of tuning configuration knobs is to reduce re-

source utilization while still guaranteeing the Service Level Agree-

ment (SLA), e.g., without violating the throughput and latency

requirements. Figure 1 plots the throughput along with CPU usage

on a real workload with 2 controlling knobs, i.e., the number of

open tables
1
and the number of times a thread waits for the mu-

tex to be freed before suspending
2
. The result shows that, even

though a wide range of configurations has different CPU usages,

they experience the same throughput. As mentioned earlier, the

throughput of real workloads is often bounded by the user request

rate. Therefore, there are opportunities to optimize resource uti-

lization without sacrificing the SLA. Most existing database tuning

methods [11, 19, 27, 49] mainly focus on improving the through-

put and latency without optimizing the resource usage and SLA

simultaneously. For example, iTuned [11] and OtterTune [6] use

Gaussian Processes to tune knobs to achieve only high throughputs.

CDBTune [49] and QTune [27] use the reinforcement learning ap-

proach to train a policy model to recommend good knobs, which,

however, takes a long time to learn the model [23].

The other challenge is to satisfy the natural constraint imposed

by the real applications that often limit the required tuning times.

Tuning systems replay the workload repeatedly to learn the model

iteratively, and the replay times dominate the tuning process. The

state-of-the-art systems [6, 49] take hundreds to thousands of iter-

ations to find an ideal configuration. For typical benchmarks that

assume the transaction statistics do not change over time, the re-

play time can be set to 3-5 minutes [49]. But for real workloads,

we observe that the replay time for each iteration takes at least

5 minutes to adapt to different types of transactions. This could

cause the total tuning time for real workloads to last for a few days.

This issue is more pronounced when considering that tuning itself

requires computing resources such as DBMS copies to replay on the

1
MySQL knob: table_open_cache

2
MySQL knob: innodb_sync_spin_loops

user side (Section 4). Thus, the tuning time should be minimized.

In addition, tuning DBMS systems, e.g., reducing the high resource

utilization, can be used for online performance troubleshooting.

High utilization could have a severe impact on system availability.

From this point of view, the tuning time should match the typi-

cal system recovery time, which is often from a few minutes to 1

hour [1]. To accelerate the tuning process by reducing the budget

to tens of iterations, ResTune utilizes the historical data collected

from tuning other tasks and transfer the experience into tuning

new tasks. This requires the tuning algorithm to efficiently and

effectively represent useful knowledge from historical tuning data.

Our Approach. Different from previous works that only consider

the throughput and latency, in this paper, we define the resource-
oriented tuning problem that aims to find the configurations to

minimize the resource usage without sacrificing the throughput

and latency. We formulate it as a constrained optimization problem

and propose ResTune, a constraint-aware database tuning system

boosted by meta-learning. ResTune is a tool provided by the cloud

providers, which aims to reduce the Total Cost of Ownership for

its end users. It optimizes the resource utilization for a given work-

load by imposing constraints on the performance requirements.

ResTune models both the objective function and the constraints

using Gaussian processes to recommend configurations with op-

timized resource utilization while guaranteeing the SLA. To im-

prove the efficiency of ResTune, we use meta-learning, which is the

method of systematically learning from meta-data to accomplish

new tasks [44]. A novel meta-learning pipeline is proposed to use

multiple models (base-learners) to represent prior knowledge and

an ensemble model (meta-learner) to combine and effectively uti-

lize the experiences. The meta-learner measures the usefulness of

base-learners to target workload through meta-feature and model

prediction. In this way, ResTune could accordingly make use of

existing data and accelerate the tuning process. Furthermore, our

approach can transfer the knowledge over different workloads and

heterogeneous hardware environments.

Specifically, we make the following contributions:

• To deal with the challenges in real DBMS scenarios, we formu-

late the resource-oriented configuration tuning problem as a

constrained Bayesian Optimization problem.

• To accelerate the tuning process within an acceptable time inter-

val, a meta-learning strategy is proposed to extract experience

from past tasks. Unlike previous studies, our approach uses rel-

ative rankings rather than absolute distances to measure the

similarity between workloads. It can better transfer knowledge

across different hardware environments and achieve fast tuning

and efficient adaptation. To the best of our knowledge, this is the

first attempt to boost constrained Bayesian Optimization with

meta-learning for tuning DBMS.

• We implement the proposed method and evaluate on standard

benchmarks and real workloads. Compared with the manual con-

figurations provided by the DBAs, ResTune reduces 65% of CPU

utilization, 87% of I/O, and 39% of memory on average. Compared

with the state-of-the-art DBMS tuning systems, ResTune finds

better configurations with up to ∼ 18× speedups.

The remainder of the paper is organized as follows. Section

2 provides the related work and Section 3 formally defines the

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2103

resource-oriented tuning problem. An overview of our approach is

given in Section 4, followed by solving the constrained optimization

problem in Section 5. We propose the meta-learning approach to

accelerate the tuning process in Section 6. Section 7 presents the

experimental results. Last, we conclude in Section 8.

2 RELATEDWORK
TuningKnobs. There has been an active area of research on tuning
configuration knobs of DBMS recently. Many works [6, 11, 27, 49]

have studied auto-tuning the knobs, but they mainly focus on opti-

mizing the performance. Although they do not consider reducing

the resource usage, the methods are valuable, which can be mainly

classified into three categories: search-based, Bayesian Optimiza-

tion (BO) [37] based and Reinforcement Learning (RL) [28] based.

• Search-based. BestConfig [51] is a search-based method, which

tries to find good configuration according to several heuristics.

Whenever a new tuning request comes, theywill restart the entire

search process and not take advantage of past experience.

• BO-based. Ottertune [6] and iTuned [11] uses the BO-based

method, modeling the tuning as a black-box optimization prob-

lem. Ottertune also considers past experience by using aworkload

mapping strategy. However, this strategy can not adapt to the

changes to hardware [6], which restrains using extensive data

in the cloud environment. Another work [35] uses the Gaussian

process to predict response times of queries to meet the SLAs,

while we focus on optimizing resource usage by tuning knobs.

• RL-based. RL methods in [23, 27, 49] tunes the performance of

DBMS by learning a neural network between the internal metrics

and the configuration knobs. Its training overload is relatively

high, so it takes thousands of iterations to train SYSBENCH [27].

Bayesian Optimization with Constraints. In realistic scenarios,

it is often necessary to satisfy a few constraints, such as memory

consumption [36, 41], prediction time [14, 15].The simplest way

to solve constrained optimization is to define a penalty value and

attach it to the objective function when violating the constraints [12,

18, 41]. More advanced approachesmodel the possibility of violating

one or more constraints and search for configurations that are

unlikely to violate any constraints [14, 24]. These works inspire us

to solve the resource-oriented tuning problem.

Meta-Learning for HPO. Recently, works on Hyper-Parameters

Optimize (HPO) utilizemeta-learning to borrow strength frommeta-

data [8, 16, 32, 33, 45–47, 50]. Meta-data are the data describing

previous learning tasks and learned models, including measurable

properties of the task, also known as meta-features [43]. Our design

is highly motivated by RGPE [13]. It trains a weighted surrogate on

each history and target task to optimize machine learning hyper-

parameters. We adopt its ensemble idea and apply it to the resource-

oriented problem. To the best of our knowledge, this is the first work

to boost constrained Bayesian Optimization with meta-learning. To

evaluate feasibility across tasks, we define constraints in a unified

scale and propose two weight assignment strategies.

3 PROBLEM STATEMENT
We formalize the resource-oriented tuning problem as an optimiza-

tion problem with SLA constraints. The objective is to minimize

resource usage without violating the constraints on the throughput

and latency requirements. The cloud database providers guarantee

the SLA [38][39] under the default configuration. Therefore, the

constraints are determined by the throughput and latency under

default configuration before the resource-oriented tuning starts.

ResTune assures the database performance does not downgrade

from the previous configuration (e.g., the DBA default). Sometimes

slow queries or other anomalies can break the SLA, but these are

issues orthogonal to our tuning tasks.

Constrained Optimization Problem. Consider a database sys-
tem with a continuous configuration space Θ = Θ1 ×Θ2 × ... ×Θ𝑚

withΘ𝑖 ∈ [0, 1]. We normalize the range of the knobs into [0,1]. For

knobs taking discrete values, we first partition [0, 1] into bins and

then round each value to the nearest bin after normalization. Let

𝑓𝑟𝑒𝑠 , 𝑓𝑡𝑝𝑠 , 𝑓𝑙𝑎𝑡 denote the resource utilization (e.g., 𝑓𝑐𝑝𝑢 , 𝑓𝑚𝑒𝑚𝑜𝑟𝑦

or 𝑓𝑖𝑜), throughput and 99%th percentile latency, respectively. For

a given workload, we want to find the configuration \∗ ∈ Θ that

minimizes resource usage and satisfies the SLA requirements. The

resource-oriented tuning problem is defined as follows:

argmin

\

𝑓𝑟𝑒𝑠 (\),

s.t. 𝑓𝑡𝑝𝑠 (\) ≥ _𝑡𝑝𝑠

𝑓𝑙𝑎𝑡 (\) ≤ _𝑙𝑎𝑡

(1)

with _𝑡𝑝𝑠 and _𝑙𝑎𝑡 being the lower bound of the throughput and

the upper bound of the latency, respectively.

4 OVERVIEW OF RESTUNE
Figure 2 presents the overviewworkflow of ResTune.When a tuning

task is launched, a copy instance of the target DBMS is initiated,

and a time window of the target workload is collected for future

replay. The copy instance is deployed in the user’s environment,

e.g., dedicated Virtual Private Cloud, to protect data privacy. Two

main parts of ResTune are deployed separately, ResTune Client

and ResTune Server. ResTune Client consists of the Meta-Data

Processing component and the Target Workload Replay component,

and it is deployed in the user’s environment. It handles the pre-

processing of the target task and the evaluation of suggested knobs.

ResTune Server is responsible for recommending the configuration

for each iteration, and it is deployed in the backend tuning cluster,

consisting of two components: Knowledge Extraction and Knobs

Recommendation. After pre-processing the target task in ResTune

Client, the meta-feature and the base model of the target task are

sent to the Knowledge Extraction component of ResTune Server.

ResTune Server then calculates the static weights and the dynamic

weights based on the target task’s input, meta-features and base

models stored in the data repository. After ensembling, a meta-

learner is used to recommend new configurations. Finally, the knobs

are applied to the database, and the replayer is triggered. Then, the

evaluation results are appended in the observations of the target

task, finishing an iteration. When the tuning task ends, the meta-

data of the task is collected to the data repository.

Data Repository. Data Repository maintains meta-features and

base models generated from previous tuning tasks on various work-

loads and hardware environments. The meta-feature is an embed-

ding vector representing the workload’s overall resource utilization,

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2104

Meta-feature
of Task 2

... ...

 Meta-feature
of Task 1

Meta-feature
of Task n

Scale Unification

Workload Characterization Static Weights Learning

Base Model
of Task 2

... ...

Base Model
of Task n

Base Model
of Task1

SQL Generator

ReplayerCopy of Target DBMS

Trigger

Gaussing Process Dynamic Weights Learning

Ensemble

Knobs

Workload

Observations

Ev
al

ua
tio

n
Re

su
lts

Meta-Learner

 Meta-feature
of Target Task

Base Model
of Target Task

 Optimizing Acquisition Function

Figure 2: Overall Architecture of ResTune

and the base model is a multi-output Gaussian Processing model fit-

ted with historical observations on resource utilization, throughput,

and latency (defined in Section 5.1).

Meta-Data Processing. With the target workload and its obser-

vations, the Meta-Data Processing component calculates the meta-

feature and generates a base-learner for the target task. The meta-

feature is calculated through the workload characterization pipeline.

At initialization, when observations are insufficient to fit an accu-

rate model, meta-feature can serve as a general understanding of

the target tuning task. When generating base-learners, there exist

various hardware instances in cloud databases, and their scales of

objective function differ a lot. Therefore, ResTune first unifies the

meta-data to the consistent scale by standardizing the observations

to have zero mean and unit standard deviation. The values of con-

straints on throughput and latency are also re-scaled, forming a

constrained optimization task ready for further learning.

Knowledge Extraction. The Knowledge Extraction component

uses the method proposed in Section 6 to combine the base-learners

into a meta-learner in a weighted ensemble manner. It adopts two

strategies to assign the weights: static and dynamic weights learn-
ing. At initialization, the static weights learning assigns weights

based on the meta-feature distances. Afterward, ResTune uses the

dynamic weights learning strategy, comparing the relative ranking

between the prediction from the base-learner and the target task’s

observations. With the dynamic assigning strategy, the weights up-

date as the number of observations for the target workload increases

(Section 6.4.2). With these two strategies, we get a meta-learner

that serves as a learned surrogate model boosted with experience.

Knobs Recommendation.After learning the weights, the learned
surrogate model is ready to predict the performance and resource

utilization on new configurations. With the predictability of the

meta-learner, ResTune generates promising configurations of knobs

that satisfy the re-scaled constraints. Internally, the Knobs Recom-

mendation component suggests the next configuration to evaluate

by optimizing the constrained acquisition function (Section 5).

Target Workload Replay. Once the recommended configuration

applies to the database copy, the workload generator triggers to

replay the user’s workload under the same environment. Replay-

ing the same query repeatedly would cause the write operations

(INSERT, UPDATE, DELETE) invalid due to the conflict of primary

keys or foreign keys. To solve this, the TargetWorkload Replay com-

ponent extracts the query template from the workload and sample

the scalar value and variable name before replaying. Furthermore,

to reproduce the user’s real behavior, the replayer supports exe-

cuting the queries at a given request rate. In our experiment, we

use the same request rate as the target workload. After replaying,

the evaluation results of resource utilization, throughput, latency

are collected in the observation data. The tuning process keeps

iterating until the decline in resource utilization reaches the goal

or the tuning model is converged. If changes in resource utiliza-

tion, throughput and latency do not exceed 0.5% in 10 consecutive

iterations, the model is considered to be converged.

5 SOLVING CONSTRAINED OPTIMIZATION
As we discussed, resource-oriented tuning can be formalized as a

constrained optimization problem. In this section, we introduce

Constrained Bayesian Optimization (CBO), which extends Bayesian

Optimization with an inequality-constrained setting. ResTune could

therefore recommend configurations with optimized resource uti-

lization while guaranteeing the SLA (Service Level Agreement).

5.1 Modeling Constrained Functions
In our resource-oriented tuning problem, constraint functions 𝑓𝑡𝑝𝑠 (\)
and 𝑓𝑙𝑎𝑡 (\) can be observed simultaneously with the objective

function 𝑓𝑟𝑒𝑠 (\). But they are also expensive-to-evaluate black-box

functions the same as 𝑓𝑟𝑒𝑠 (\). We use Gaussian Process [31], a

powerful learning technique with power equivalent to that of deep

networks [6]. It allows us to approximate complex response sur-

faces through adaptively sampling of the search space in a manner

balancing exploration and exploitation. GP outputs the estimated

confidence bound on the predictions, supports noisy observations,

and has the ability to use gradient-based methods [34]. In ResTune,

we model 𝑓𝑡𝑝𝑠 (\) and 𝑓𝑙𝑎𝑡 (\) with a conditionally independent

Gaussian Process, denoted by
˜𝑓𝑡𝑝𝑠 (\) and ˜𝑓𝑙𝑎𝑡 (\). Similarly, proba-

bilistic model of the resource utilization is denoted by
˜𝑓𝑟𝑒𝑠 (\).

During the optimization process, we keep a data set 𝐻 that

records the historical observations in the form of four-tuples: 𝐻 =

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2105

{(
\𝑖 , 𝑓𝑟𝑒𝑠 (\𝑖) , 𝑓𝑡𝑝𝑠 (\𝑖) , 𝑓𝑙𝑎𝑡 (\𝑖)

)}𝑛
𝑖=1

, corresponding to the knobs

configuration and the value of resource utilization, throughput and

latency under this configuration. We denote configuration that sat-

isfies the performance constraints as feasible configuration. Note

that 𝐻 includes both the data of feasible configurations and infeasi-

ble ones. Although infeasible configurations are not considered to

be recommended as final results, they are useful to the optimiza-

tion process for two factors. First, infeasible configurations can

indicate which regions of the configuration space are more likely

to be feasible, which reduces the exploration to the substandard

region. Second, infeasible configurations help determine the shape

and descent directions of the objective function and the constrained

functions, contributing to more efficient exploitation.

Based on the observation data 𝐻 , we maintain three indepen-

dent Gaussian Processing models with mean `𝑢 (\) and variance

𝜎2𝑢 (\), 𝑢 ∈ {𝑟𝑒𝑠, 𝑡𝑝𝑠, 𝑙𝑎𝑡}. After each iteration, we add the latest

observation data in𝐻 and update the three GP models. They can be

formalized as a multi-output Gaussian Process model that outputs

the predictions with confidence bounds.

5.2 Guiding Search in Feasible Region
To facilitate the recommendation of feasible configurations, we

reconsider the acquisition function in basic Bayesian Optimiza-

tion. The new acquisition function should guide the selection of

configurations with less resource utilization in feasible areas.

We denote the improvement function of a candidate point \

in terms of the objective function as 𝐼 (\) and its expected form

as 𝛼𝐸𝐼 (\). The Expected Improvement 𝛼𝐸𝐼 (\) is a state-of-the-art
acquisition function in BO since it be calculated in closed form. The

𝛼𝐸𝐼 (\) is defined below:

𝛼𝐸𝐼 (\)=E [𝑚𝑎𝑥 (0, 𝑓𝑟𝑒𝑠 (\𝑏𝑒𝑠𝑡) − 𝑓𝑟𝑒𝑠 (\)] (2)

However, directly applying the EI function would lead to in-

feasible knobs recommendation with low resource utilization at

the cost of database performance. To solve our constrained opti-

mization problem, we extend the acquisition function with two

modifications. First, different from the original definition in the

EI function, \𝑏𝑒𝑠𝑡 is redefined as the best feasible point, meaning

the configuration has the lowest resource utilization and satisfying

the throughput and latency constraints. Second, improvement of

the infeasible points is assigned a value of zero, meaning infeasible

points achieve no improvement. Now we define the improvement

function with constraint for a candidate \ :

𝐼𝐶 (\) = Δ(\)𝑚𝑎𝑥 (0, 𝑓𝑟𝑒𝑠 (\𝑏𝑒𝑠𝑡) − 𝑓𝑟𝑒𝑠 (\)) (3)

The feasible indicator function Δ(\) is one when \ is feasible or

zero, otherwise. Using the probabilistic surrogate model, the im-

provement function with constraints can be calculated as:

𝐼𝐶 (\) = Δ̃(\)𝑚𝑎𝑥 (0, 𝑓𝑟𝑒𝑠 (\𝑏𝑒𝑠𝑡) − ˜𝑓𝑟𝑒𝑠 (\)) = Δ̃(\)𝐼 (\) (4)

The term Δ̃(\) is a Bernoulli random variable with expectation

E[Δ̃(\)] = 𝑃𝑟 [˜𝑓𝑡𝑝𝑠 (\) ≥ _𝑡𝑝𝑠 , ˜𝑓𝑙𝑎𝑡 (\) ≤ _𝑙𝑎𝑡]. Note that 𝑃𝑟 [𝑓𝑡𝑝𝑠 (\) ≥
_𝑡𝑝𝑠 , 𝑓𝑙𝑎𝑡 (\) ≤ _𝑙𝑎𝑡] is a multivariate Gaussian probability. Con-

sidering the independence, it can be factorized as 𝑃𝑟 [𝑓𝑡𝑝𝑠 (\) ≥
_𝑡𝑝𝑠] ·𝑃𝑟 [𝑓𝑙𝑎𝑡 (\) ≤ _𝑙𝑎𝑡], a product of two Gaussian cumulative dis-

tribution functions. Finally, the constrained acquisition function can

be constructed, we call it Constrained Expected Improvement(CEI):

𝛼𝐶𝐸𝐼 (\) = E
[
𝐼𝐶 (\) |\

]
= E

[
Δ̃(\)𝐼 (\) |\

]
= E

[
Δ̃(\) |\

]
E

[
𝐼 (\) |\

]
= 𝑃𝑟 [˜𝑓𝑡𝑝𝑠 (\) ≥ _𝑡𝑝𝑠] · 𝑃𝑟 [˜𝑓𝑙𝑎𝑡 (\) ≤ _𝑙𝑎𝑡] · 𝛼𝐸𝐼 (\)

(5)

According to the definition, the acquisition function 𝛼𝐶𝐸𝐼 (\) is
the EI function of \ over the best feasible point so far, weighted by

the probability that both 𝑓𝑡𝑝𝑠 (\) and 𝑓𝑙𝑎𝑡 (\) satisfy the constrains.

The CEI function can well balance the expected objective value with

the probability of feasibility. Therefore, ResTune can recommend

promising feasible configurations.

6 BOOSTING TUNING PROCESS
With the constrained Bayesian Optimization technique, ResTune

can solve the resource-oriented tuning problem. However, different

target workloads are tuned independently, without considering the

correlation among them. Intuitively, the same workloads running

on different hardware share information for tuning knobs. Even for

different tasks, the relationship between hidden features can lead

to knowledge sharing. As cloud providers, we can collect abundant

tuning data from numerous tasks and further accelerate the tuning

process of new tasks. Motivated by meta-learning, we propose

a framework that combines base-learners and generates a meta-

learner 𝐿𝑀 for the target workload. Base-learners are learning

subsystems adaptive with the experience [25]. With a set of prior

observations and a small set of known observations on a new task

(target task), a meta-learner is a learned model that can suggest

good configurations for the new task. In Section 6.1 and 6.2 describe

what are the knowledge ResTune use. Section 6.3 and 6.4 describe

how to combine the base-learners for tuning the target task.

6.1 Scale Unification
There are various of instances and workloads in could database,

making the scales of metrics among tuning tasks differ a lot. In

Section 5, each tuning task is independent, forming the observation

track {\ 𝑗 , 𝑓𝑢 (\𝑖)}𝑛𝑗=1,𝑢 ∈ {throughput, latency, resource utilization}.
We denote the observation history for tuning task 𝑤𝑖 by H𝑖 =

{\𝑖
𝑗
, 𝑓𝑢 (\𝑖𝑗 ,𝑤𝑖)}𝑛𝑖𝑗=0, 𝑖 = 1, ...,𝑇 . 𝑇 is the total number of historical

tasks. To further utilize historical observations to evaluate configu-

ration’s performance and feasibility, we need to unify the metrics

of different scales. We adopt a simple strategy that standardizes

the observations for each task separately to have zero mean and

unit standard deviation [48]. As a result, the output prediction of

the base-learner is a relative value instead of absolute performance

𝑓 (\,𝑤𝑖). Meta-learner also outputs a relative value, denoted by

𝐿𝑀 (\). Accordingly, the constraint 𝑓𝑢 (\) ≤ _𝑢 ,𝑢 ∈ {tps, lat} needs
to be transformed to 𝐿𝑢

𝑀
(\) ≤ _

′
𝑢 with a re-scaled value _

′
𝑢 . Since

we usually use the performance metrics of default configuration

as constraints, i.e. _𝑢 = 𝑓𝑢 (\𝑑 ,𝑤𝑡𝑎𝑟𝑔𝑒𝑡), where \𝑑 is the default

configuration. We can set re-scaled _
′
𝑢 as 𝐿𝑢

𝑀
(\𝑑).

Proof. If meta-learner predicts the relative performance value

of \ to be a smaller value than that of \𝑑 .i.e. 𝐿𝑢
𝑀
(\) ≤ 𝐿𝑢

𝑀
(\𝑑),

then it’s predicted that 𝑓𝑢 (\,𝑤𝑡) ≤ 𝑓𝑢 (\𝑑 ,𝑤𝑡) .i.e 𝑓𝑢 (\,𝑤𝑡) ≤ _𝑢 .

If meta-learner predicts the the relative performance value of \ to

be a larger value than that of \𝑑 .i.e. 𝐿𝑢
𝑀
(\) ≥ 𝐿𝑢

𝑀
(\𝑑), then it’s

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2106

predicted that 𝑓𝑢 (\,𝑤𝑡) ≥ 𝑓𝑢 (\𝑑 ,𝑤𝑡) .i.e 𝑓𝑢 (\,𝑤𝑡) ≥ _𝑢 . There the

re-scaled constraint _
′
𝑢 can be set as 𝐿𝑢

𝑀
(\𝑑).

6.2 Workload Characterization
Another kind of meta-data is characterizations of the workload. At

initialization, the observations of the target task are insufficient.

Therefore, ResTune uses meta-features to find similar base-learners.

We propose a workload characterization pipeline to extract the

meta-feature vector 𝑚𝑖 for each tuning task. Then the weights

of base-learners are calculated based on the similarity measured

on the meta-feature. The pipeline of workload characterization is

discussed as follows, it produces the meta-feature that represents

the estimated resource cost of the workload.

Feature Extraction. Different workloads have different queries
containing specific variables. The challenge is that our model for

meta-feature should generalize over different database schemas

and SQL queries. As we discussed, the workload characterization

component is deployed in the user’s environment, simple models

are preferred. Although using statistics from optimizer such as plan

structures are beneficial, it needs hand-engineered feature engineer-

ing effort. Instead, we only use the SQL queries without collection

additional information during execution. However, the variable

names and digits used in SQL queries are unbounded, which makes

generalization across workloads and schemas difficult [21, 52]. Note

that the query templates exhibit only a small number of different

patterns, it allows us to adopt the TF-IDF (term frequency-inverse

document frequency) method [17]. Specifically, each query contains

reserved SQL keywords (e.g., SELECT, UPDATE, DISTINCT), and

each reserved word represents a certain type of operation in DBMS.

We extract the reserved words by filtering out the specific variables

and calculate the TF-IDF feature vector for each query. Since only

the reserved words are used, the vocabulary dictionary is small,

and the model has better generality.

Classification Model. Based on the TF-IDF feature vectors, we

adopt a random forest model to classify each query. To train the

model, We use the resource cost level as labels, which have a wide

range of values and are highly skewed. To prevent the models

from being too sensitive to queries with a large label value (out-

liers), we apply a logarithmic transformation to the values of these

labels[52][26] and discrete labels to do the classification.

Workload Embedding Procedure. For each workload, we iden-

tify the reserved words for each query and then apply the TF-IDF

transformer. The TF-IDF feature vectors are used as the input to the

random forest model for classification, which returns the predicted

probability distribution. We compute the average of the probabil-

ity distributions (as vectors) for all the queries across the whole

input workload. The averaged probability distribution represents

the meta-feature for the input workload by characterizing the ap-

pearance frequencies of the queries.

6.3 Knowledge Extraction
A simple way to extract the historical knowledge is to combine

all past runs into the same model as observations in the current

run. However, this approach has two drawbacks. First, it does not

scale well with the number of past runs. Gaussian Process (GP)

regression has 𝑂 (𝑛3) complexity, and combining 𝑡 past runs with

𝑛 iterations into a single model incurs 𝑂 (𝑡3𝑛3) computational cost.

Second, learning a GP on all training instances relies on the strong

assumption that each tuning task from different workloads or hard-

ware environments is equally important [47]. Mapping to the most

similar workload like [6] still can not solve this problem, as the

target workload and the mapped workload may not be identical.

Therefore, we need a scalable meta-learner that can distinguish

experience and predict the output.

In our approach, base-learners 𝑙𝑖 , 𝑖 = 1, ...,𝑇 are responsible

for memorizing historical observations 𝐻𝑖 . We also fit a model

for the target workload 𝑤𝑇+1. As discussed, we use the Gaussian
Process model to fit each tuning task’s observations as a base-

learner. So we have 𝑇 + 1 base-learners with mean function `𝑖 (\),
variance function 𝜎2

𝑖
(\). Together with all the base-learners, we

can train a meta-learner 𝐿𝑀 to predict the performance of the

configuration \𝑖 on target workload 𝑤𝑇+1. Since GP provides a

theoretically justified way to trade off exploration (i.e., acquiring

new knowledge) and exploitation (i.e., making decisions based on

existing knowledge) [22], we still adopt GP as meta-leaner 𝐿𝑀 ,

𝐿𝑀 (\ |𝐻) ∼ N (`𝑀 (\), 𝜎2
𝑀
(\)). It extracts knowledge from base-

learners in a weighted manner. The mean function is a weighted

combination of the predictions of each base-learners:

`𝑀 (\) =
∑𝑇+1
𝑖=1 𝑔𝑖`𝑖 (\)∑𝑇+1

𝑖=1 𝑔𝑖
(6)

where 𝑔𝑖 is the weight of base-learner 𝑙𝑖 . Considering the observa-

tion from target workload should be more trusted, we define 𝜎2
𝑀
(\)

to rely on the uncertainty of target base-learner 𝑙𝑇+1 only, where
𝑣𝑖 is assigned to one for target base-learner and 0 otherwise:

𝜎2𝑀 (\) =
𝑇+1∑
𝑖=1

𝑣𝑖𝜎
2

𝑖 (\), 𝑣𝑖 =

{
1 i=T+1

0 otherwise

(7)

In this way, the complexity of tuning keeps 𝑂 (𝑛3), meaning

combining meta-data does not add computational complexity.

6.4 Base-Learner Evaluation
How to combine the base-learners according to meta-data is vital

to the performance of our meta-learning design. As we discussed in

Section 6.3, we assign a weight for each base-learner. We propose

two techniques to combine base-learners, which refer to static

weight learning and dynamic weight learning.

6.4.1 Learning frommeta-feature. At initialization, wemeasure the

similarity for tuning tasks based on the meta-feature of workload. If

a workload is more similar to the target workload, a larger weight is

assigned to its base-learner. Therefore, the weight 𝑔𝑖 of base-learner

𝑙𝑖 is the similarity between the workload𝑊𝑖 ’s meta-feature𝑚𝑖 and

the target workload’s meta-feature𝑚𝑇+1. We choose Epanechnikov

quadratic kernel [30] as the measurement of similarity.

𝑔𝑖 = 𝛾

(
∥𝑚𝑖 −𝑚𝑇+1∥2

𝜌

)
, 𝛾 =

{
3

4
(1 − 𝑡2) 𝑡 ≤ 1

0 otherwise

(8)

and 𝛾 ≥ 0 is the bandwidth. Consequently, meta-learner 𝐿𝑀 trusts

more on the base-learner, which has a more similar resource uti-

lization pattern with the target workload.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2107

6.4.2 Learning from model predictions. When we have more ob-

servations of the target task, we can define base-learners’ gener-

alizability in terms of how accuracy base-learner can predict the

performance (e.g., throughput, internal metrics) of the target task.

The challenge here is that performance metrics can differ in scale

significantly among various hardware environments in the cloud.

Ottertune [6] limits all the mapped workloads under the same

hardware in their mapping schema. We solve this problem from

an observation: the actual values of the predictions do not matter

since we only need to identify the location of the optimum [25].

The fundamental similarity of tasks in an optimization problem

means that the tasks have surfaces with similar trends about where

the objective is minimized in the configuration space. So if a base-

learner can correctly order the configurations according to their

performance values, it’s considered useful to the meta-learner [13].

Historical base-learner evaluation. Given 𝑛𝑡 as the number of

target observations, we denote 𝑅𝑢 (𝑙𝑖), as the misranked pairs for

metric𝑢 i.e. ranking loss for performancemetric𝑢 that the historical

base-learner 𝑙𝑖 predicts against the target observation 𝑓𝑢 (\,𝑤𝑇+1):

𝑅𝑢 (𝑙𝑖) =
𝑛𝑡∑
𝑗=1

𝑛𝑡∑
𝑘=1

1
(
𝑙𝑢𝑖 (\ 𝑗) ≤ 𝑙𝑢𝑖 (\𝑘)

)
⊕

(
𝑓𝑢 (\ 𝑗 , 𝑤𝑇+1) ≤ 𝑓𝑢 (\𝑘 , 𝑤𝑇+1)

)
(9)

where ⊕ is exclusive-or operator and 𝑢 ∈ {tps, lat, res}. Consider
the objective and constraints, ranking loss for historical base-learner

is

∑
𝑢∈𝑆 (𝑅𝑢 (𝑙𝑖)), which means that if one pair of the configurations

is misranked, the ranking loss 𝑅(𝑙𝑖) is increased by one.

Target base-learner evaluation. For target task, the definition
above uses in-sample error and can not accurately reflect general-

izability of target base-learner 𝑙𝑇+1. We estimate generalizability

for 𝑙𝑇+1 with the leave-one-out strategy. We use 𝑙𝑇+1,−𝑗 donate
𝑙𝑇+1 with observation (\ 𝑗 , 𝑓 (\ 𝑗 ,𝑤𝑇+1)) leaved out. 𝑙𝑇+1,−𝑗 is con-
structed by removing the data point from the GP model and kernel

hyper-parameters do not need re-estimated. To obtain the ranking

loss for target base-leaner, we replace 𝑙𝑖 in right side of equal sign in

Equation 9 with 𝑙𝑇+1,−𝑗 . Then the loss is the number of misranked

pairs that 𝑙𝑇+1 predicts against real observations in out-of-sample

setting. With the dynamic schema, the weight of 𝑙𝑇+1 is increased
when no source tasks can help to prevent "negative transfer" [40].

Finally, each base-learner is weighted with the probability that

it is the base-learner with the lowest ranking loss. As 𝑙𝑖 (\) is a
random variable with mean and variance, we can sample from the

posterior distribution of 𝑅(𝑙𝑖) and estimate the probability.

6.4.3 Adaptive weight schema. ResTune uses an adaptive weight

schema to combine the weights discussed above. The observations

of the target task are limited at the beginning. For initialization, it

is a common practice to bootstrap optimization by a set of samples.

One way is to use Latin Hypercube Sampling [19]. However, we re-

alize that the meta-features generated by workload characterization

can give a coarse-grained abstraction about task properties. There-

fore, in the initial iterations, we use an ensemble model weighted

by meta-features to suggest knobs that are promising according to

similar historical tasks. After ResTune collects more observations of

the target task, we assign the weights based on the ranking of model

predictions, which measure the similarity of tasks in the optimiza-

tion problem. It provides a dynamic perspective, and the influence

Table 1: Hardware Configurations for Database Instances
A B C D E F

CPU 48 cores 8 cores 4 cores 16 cores 32 cores 64 cores

RAM 12GB 12GB 8GB 32GB 64GB 128GB

Table 2: Workloads
Name SYSBENCH TPC-C Twitter Hotel Sales

Size(G) 10,30,100 13,100 29 14 10

#Thread 64 56 512 256 256

R/W Ratio 7:2 19:10 116:1 19:1 154:1

Request Rate(txn/s) 21K 2K 30K / /

of historical base-learners shrinks over iterations. The meta-learner

relies more and more on target base-learners gradually.

7 EVALUATION
In this section, we evaluate the performance of ResTune. Since none

of the existing knobs tuning methods optimize resource usages,

we carefully modify them to solve the resource-oriented tuning

problem defined in this paper. The baselines are presented below.

• Default: The default knobs provided by experienced DBA.

• iTuned: iTuned uses Gaussian Process as a surrogate model and

uses the Expected Improvement acquisition function to search

for the optimal configuration. We modified iTuned by changing

its objective from maximizing the throughput to minimizing the

resource utilization, with the algorithm unmodified.

• CDBTune-w-Con: CDBTune utilizes the deep deterministic pol-

icy gradient to find the optimal knobs. It relies on a reward func-

tion to encourage the recommendation of knobs with minimal

latency or maximal throughput. For example, if the latency is

larger than the initial value, the reward is negative. If the latency

is smaller than the initial value and previous tuning value, the

reward is positive. In the other cases, the reward remains zero.

To support resource-oriented tuning, we make two modifications

to the reward function, namely CDBTune with constraints. First,

we encourage the agent to minimize resource usage by replacing

latency in the original reward function with resource utilization.

Second, we encourage the agent to find feasible knobs. If the re-

ward is positive(decreasing resource usage) but violates SLA, we

set the reward zero. If the reward is negative(increasing resource

usage) but the SLA is guaranteed, we also set the reward zero.

• OtterTune-w-Con: OtterTune uses a machine-learning pipeline to

collect, process, analyze knobs and recommend possible settings

by learning from historical data. Ottertune does not consider

the SLA requirement, so we replace its acquisition function with

CEI in Section 5 we defined in ResTune. We call it OtterTune

with constraints. Unlike meta-learning, OtterTune identifies the

most similar workload from its repository based on the distance

between the internal metrics. It uses the matched data for target

workload in a single Gaussian Process (GP) model.

• ResTune-w/o-ML: ResTunewithoutMeta-Learning, whichmeans

the data repository is not adopted and learns from scratch.

• ResTune: Our approach that supports solving the resource-oriented

problem and uses the meta-learner to boost the tuning.

Setting.We implement ResTune using BoTorch [7] and use version

5.7 of MySQL RDS. The experiments run on cloud servers with six

instances, as shown in Table 1. The buffer pool size is fixed when

conducting the CPU and I/O resource experiments.We set the buffer

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2108

Table 3: Execution Time Breakdown per Iteration Tuning SYSBENCHWorkload

Phase ResTune ResTune-w/o-ML iTuned CDBTune-w-Con OtterTune-w-Con

Meta-Data Processing 0.653s∼1.983s / / / /

Model Update 0.312s∼2.298s 0.649s 0.151s 0.586s 11.347s

Knob Recommandation 5.115s 1.907s 0.912s 0.005s 4.457s

Target Workload Reply 182.237s(95.1%) 182.237s(98.6%) 182.186(99.4%) 182.336s(99.7%) 182.337s(92.0%)

Total Time 191.630s 184.793s 183.245s 182.927s 198.141s

pool size as half of the total memory for all instances. We use 14

knobs to optimize CPU, 6 knobs to optimize memory usage, and 20

knobs to optimize the I/O resource. The knobs are pre-selected as

important.We set _𝑡𝑝𝑠 and _𝑙𝑎𝑡 to the throughput and latency under

the DBA’s default knobs. For ResTune, We use the static weights

learning frommeta-feature in the first 10 iterations for initialization

, and switch to dynamic weights learning from model predictions

afterward. For other BO based methods(ResTune-w/o-ML, iTuned,

OtterTune-w-Con), we use Latin Hypercube Sampling(LHS) in the

first 10 initial iterations. To avoid the noise of measurement, we

accept 5% deviation when evaluating the performance metrics. We

run 3 times of each experiment and report the average result.

Workload.Our evaluations are carried out using three benchmarks

(SYSBENCH
3
and OLTPBench TPC-C, Twitter [10]) and two real

workloads (Hotel Booking and Sales) from our production, as shown

in Table 2. The benchmarks both have read and write queries. The

data size of the workload is adjusted to a value larger than the

buffer pool size on different instances. For SYSBENCH, we use three

settings with 150 tables and different table sizes(250K, 1000K, 3000K

records). For TPC-C, we use two settings consisting of 200 and 10000

warehouses. Unless otherwise specified, we use SYSBENCH with

250K table sizes and TPC-C with 200 warehouses. We conduct a

sensitivity analysis of varying data sizes for SYSBENCH and TPC-C

in Section 7.4. For Twitter, we load the data consisting 1500K users.

The request rates are counted per second and across all threads

and are set for benchmark workloads by observing throughout

under DBA’s default configuration. For Hotel Booking and Sales,

the request rates are not fixed and follow the client request.

Data Repository.We collect workload features and observation

histories of 34 past tuning tasks as our meta-data. Workload feature

is an embedding vector calculated by workload characterization in

Section 6.4.2. The 34 past tuning tasks are from 17 different work-

loads and 2 hardware environments(instance A and B in Table 1),

summing up to 6400 observations. Each observation corresponds

to a record of

(
\𝑖 , 𝑓𝑟𝑒𝑠 (\𝑖) , 𝑓𝑡𝑝𝑠 (\𝑖) , 𝑓𝑙𝑎𝑡 (\𝑖)

)
. We fit 34 historical

base-learners for the corresponding tuning tasks. To evaluate the

generalizability, we conduct our experiments under three settings:

original setting, varying hardware setting, varying workloads setting.
Under the original setting, we use all the 34 historical base models.

We use the existing workload from the data repository as the target

workload and not hold out its base model. Under the varying work-
loads setting, we test the adaption ability by holding out the target

workload’s meta-data and using 32 historical base models of the

other workloads. Similarly, we hold out the meta-data in the same

hardware environment as the target task under the varying hard-
ware setting. We use 17 historical base models(transferring between

3
https://github.com/akopytov/sysbench

instance A and B) and 34 historical base models(transferring to the

other instances in Table 1) for the tuning task in other instances.

Experiment Outline. First, to evaluate how efficient ResTune

finds feasible CPU-optimized knobs, we compare it with the default,

ResTune-w/o-ML, OtterTune-w-Con, CDBTune-w-Con, iTuned un-

der the original setting. Next, to answer how well ResTune can

extract knowledge that accelerates the tuning, we evaluate the gen-

eralizability in two aspects. In 7.2.1, we test the ability of ResTune to

transfer between different hardware environments. We conduct two

groups of experiments under varying hardware setting: transferring
between instance A and B, and transferring to instances C, D, E and

F. In 7.2.2, we compare ResTune with Default, ResTune-w/o-ML,

OtterTune-Con under varying workloads setting. To further explain

why ResTune outperforms other methods, we conduct a case study

using the Twitter workload. To illustrate the robustness of ResTune

and the correctness of the experiments, we conduct sensitivity

analysis on varying request rates and varying data sizes in 7.4. Fur-

thermore, we evaluate ResTune on optimizing the I/O resource and

memory resources. We compare ResTune with the default, ResTune-

w/o-ML, OtterTune-w-Con, CDBTune-w-Con, iTuned in terms of

I/O and the memory usage. Finally, we calculate the 1-year-TCO

reduction for different cloud providers using ResTune.

Execution Time. In Table 3, we analyze the detailed execution

time of different methods in a single iteration. We calculate exe-

cution time into four stages. The Meta-data Processing counts the

time processing of the data repository. The Model Update stage

calculates the time updating the GP model for BO methods and

learning the Actor-Critic network for Reinforcement Learning (RL)

methods. For ResTune, the first few iterations use the static weights

for initialization that takes 0.312s on average and use the dynamic

weights for the following iterations that take 2.298s on average. The

Knobs Recommendation stage counts the time for optimizing the

acquisition function for BO methods and inference for RL methods.

The Target Workload Replay stage stands for the evaluation time

in DBMS. We replay the workload for 3 minutes of the benchmark

workloads and 5 minutes of the real workloads to capture different

types of transactions. The takeaway is that the majority of the time

in each iteration of different methods is spent on replaying the

target workload. Therefore, it is reasonable to focus on the number

of iterations in the following comparison.

7.1 Efficiency Comparison
We evaluate the tuning efficiency of ResTune in various workloads

on instance under the original setting. Figure 3 shows the CPU uti-

lization of best feasible knobs output by different methods within

200 tuning iterations. The y-ax is current database-wide CPU uti-

lization as percentage, measured per second during the workload

replay and calculated on average. We make three observations.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2109

https://github.com/akopytov/sysbench

0 100 200
Iteration

70

80

90

100

CP
U

(%
)

(a) SYSBENCH

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(b) Twitter

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(c) TPC-C

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(d) Hotel

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(e) Sales

Default ResTune ResTune-w/o-ML OtterTune-w-Con CDBTune-w-Con iTuned

Figure 3: Efficiency Comparison

0 100 200
Iteration

70

80

90

100

CP
U

(%
)

(a) SYSBENCH (B to A)

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(b) Twitter (B to A)

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(c) TPC-C (B to A)

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(d) Hotel (B to A)

0 50 100 150 200
Iteration

0
25
50
75

100

CP
U

(%
)

(e) Sales (B to A)

Default ResTune ResTune-w/o-ML OtterTune-w-Con

0 100 200
Iteration

70

80

90

100

CP
U

(%
)

(f) SYSBENCH (B to A)

0 100 200
Iteration

70

80

90

100

CP
U

(%
)

(h) Twitter (B to A)

0 100 200
Iteration

70

80

90

100
CP

U
(%

)

(g) TPC-C (B to A)

0 100 200
Iteration

60
70
80
90

100

CP
U

(%
)

(i) Hotel (B to A)

0 100 200
Iteration

60
70
80
90

100

CP
U

(%
)

(j) Sales (B to A)

Default ResTune ResTune without meta-learning OtterTune-constraint

Figure 4: Performance Adapting to Different Hardware Environments

First, ResTune can find CPU-optimized configurations satisfy-

ing the SLA requirement. When tuning benchmarks, ResTune can

reduce the default CPU usage by 50.1% on average and guarantee

the SLA requirement. ResTune achieves more improvement for real

workloads, reducing the default CPU utilization by 71.3% and guar-

antee the SLA requirement. Second, ResTune-w/o-ML performs

much better than iTuned and CDBTune-w-Con. All three methods

do not utilize meta-data and only learn from the target observations.

Compared with iTuned and CDBTune-w-Con, ResTune-w/o-ML

achieves better results faster in all workloads. iTuned uses simple

Bayesian Optimization without considering constraints. It turns to

recommend infeasible configurations with minimum CPU utiliza-

tion. Such configurations usually restrict throughout and decrease

dababase performance. CDBTune-w-Con learns the mapping from

internal metrics (state) to configurations (state). In the RL basics,

an Markov Decision Process (MDP)[42] formally describes an en-

vironment. However, given a target workload, the configuration

tuning problem is not necessarily a MDP because the optimal con-

figuration is the same for any internal metrics, leading to the fact

that action and state are not necessarily related. Note that for SYS-

BENCH and Twitter, CBDTune-w-Con can only find the configura-

tion close to the default performance within 200 iterations. Third,

with our meta-learning design, ResTune accelerates the tuning with

a large margin and makes the tuning time acceptable. On average,

ResTune-w/o-ML needs 135 iterations(7.18hours) to find its best

results. For Twitter, ResTune finds knobs reducing 59.68% of CPU

usage than ResTune-w/o-ML. For the other workloads, ResTune

recommends ResTune-w/o-ML’s best results within the first 10

iterations and takes 8 iterations(25.6 minutes) to find such configu-

rations on average. Within one hour, ResTune can already find good

configurations, while the other methods can not. OtterTune-w-Con

Table 4: Workload Adaptation on More Instances
Instance C D E F

SYSBENCH

Improvement

Restune 5.02% 8.13% 17.16% 20.38%

Restune-w/o-ML 3.34% 7.58% 16.76% 19.96%

Iteration

Restune 37 64 100 35

Restune-w/o-ML 57 80 115 53

Speed Up 35% 20% 14% 34%

TPC-C

Improvement

Restune 4.96% 19.22% 33.26% 47.60%

Restune-w/o-ML 2.78% 18.28% 33.09% 42.62%

Iteration

Restune 12 25 45 18

Restune-w/o-ML 99 47 79 25

Speed Up 87.87% 46.80% 43.03% 28%

is another method that learns from historical data using a map-

ping strategy, but it falls behind ResTune. ResTune achieves 18.6×
speedup than OtterTune-w-Con in SYSBENCH and 7.38× speedup

on average. The speedup is contributed to ResTune’s meta-learning

design, which is explained in Section 7.2.3 in detail.

7.2 Evaluation on Generalization
7.2.1 Hardware Adaption. As there are various instances on cloud

databases, it’s vital whether our proposed methods can adapt to un-

seen instance types. Learning from different instances is a challenge

as the change of hardware setting, such as RAM size, processor

capacity, makes the response surfaces between knobs and metrics

differ in shape and quantity. We use all the instances in Table 1.

First, to compare ResTune and OtterTune-w-Con, we use tuning

data collected on instance A to tune the databases on instance B (A

to B) and vice versa(B to A). Second, to verify that ResTune can gen-

eralize to more instances, we use tuning data collected on instances

A and B to train tasks on instances C, D, E and F, respectively. In the

second part, we use SYSBENCH(100G) and TPC-C(100G) to ensure

that the data size is always larger than the buffer pool size.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2110

0 100 200
Iteration

70

80

90

100

CP
U

(%
)

(a) SYSBENCH

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(b) Twitter

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(c) TPC-C

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(d) Hotel

0 100 200
Iteration

0
25
50
75

100

CP
U

(%
)

(e) Sales

Default ResTune ResTune-w/o-ML OtterTune-w-Con

Figure 5: Performance Adapting to Different Workloads

0 50 100
Iteration

0

50

100

CP
U

(%
)

(a)Tuning Evaluation
 of Different Methods

Default
ResTune

ResTune-w/o-ML
iTuned

OtterTune-w-Con
CDBTune-w-Con

ResTune-w/o-Workload

spin
0 20 40 60 thread

0
50

100

TPS (txn/sec)
10000
15000
20000
25000
30000

(d)WT's Response
 Surface for TPS

spin
0 20 40 60 thread

0
10

20

TPS (txn/sec)

5000
10000
15000
20000

(e)W1's Response
 Surface for TPS

0 50 100
Iteration

0
25
50
75

100

CP
U(

%
)

(b)Ablation Study of
 Workload Charaterization

0 20 40
Iteration

0
25
50
75

100

W
ei

gh
t (

%
)

(c)ResTune's Weight
 Assignment

WT W1 W2 W3

Figure 6: Case Study on Twitter Workload with 3 Tuning Knobs

Figure 4 shows ResTune is better than other methods in all cases.

Instance A has more CPU cores and larger memory than instance

B, so its SLA requirement is higher. Using meta-data collected on

instance B, ResTune successfully finds the feasible configuration

faster and better than ResTune-w/o-ML. Nevertheless, for Twitter

on both instances and Sales on instance A, OtterTune-w-Con’s

mapping strategy slows down the tuning process compared with

ResTune-w/o-ML and ResTune. Table 4 shows results on ResTune’s

hardware adaption capabilities to instances C, D, E, and F.We record

the improvement(the reduction of best feasible CPU utilization com-

pared to the default) and the iteration (the number of iteration that

the best feasible CPU utilization is found). ResTune has better im-

provement and faster speed than the other baselines. These results

show ResTune can reasonably use historical training data to speed

up giving an equivalent or superior knobs configuration.

7.2.2 Workload Adaption. We run experiments on 5 target work-

load on instance A under the varying workloads setting. The result
is depicted in Figure 5. We can conclude that on the same instance,

ResTune outperforms all the other baselines and improves the speed

of ResTune-w/o-ML by 3.6× on average.

7.2.3 Analysis. There are three reasons that ResTune outperforms

OtterTune-w-Con. First, ResTune identities similar shapes of re-

sponse surface by ranking loss, even they differ a lot in scale. How-

ever, OtterTune-w-Con calculates the average absolute distance

of metric vectors between target workload and fails in hardware

adaption. Second, ResTune avoids overfitting into historical tasks

by using dynamic weight assignment. When the knowledge of

historical base-learners is less helpful, ResTune can increase tar-

get base-learner’s weight up to 100%. However, OtterTune-w-Con

keeps matching historical workload and does not have a mechanism

to stop when there is no similar workload, which would hinder

the optimization (negative transfer). Third, OtterTune-w-Con only

reuses single workload data, while ResTune extracts experience

through multiple base-learners and ensemble them together.

Table 5: Statistics about Workload Variations
Workload WT W1 W2 W3 W4 W5

R/W Ratio 116:1 32:1 19:1 14:1 11:1 9:1

Distance to Wt 0 0.075 0.156 0.191 0.278 0.342

Static Weight 53.57% 46.00% 20.98% 4.80% 0% 0%

Ranking Loss / 17.93% 22.71% 27.75% 34.04% 60.91%

Table 6: Best Configurations Found by Different Methods
thread_concurrency spin_wait_delay lru_scan_depth CPU

Default 0 6 1024 75%

Grid Search 17 0 100 14.43%

ResTune 13 0 356 11.22%
ResTune-w/o-ML 14 1 100 12.97%

OtterTune-w-Con 30 2 2244 20.59%

CDBTune-w-Con 122 3 180 45.03%

iTuned 43 21 100 65.10%

0.49

Throughput
(trx/s)

Latency
(sec)

CPU (%)

lru_scan_depth = 356

thread_concurrency = 13

spin_wait_delay = 0

Default Value

Current Value

75 55 35 15

11.25

0.440.39

0.339

0.34

3.0e+4 3.4e+43.2e+4

30,406

Figure 7: SHAP Path: Features Contributions from Default Knobs

7.3 Case Study
To further explain ResTune’s advantages over other methods, we

conduct a case study using the Twitter workload. We tune three

CPU related knobs, including the maximum number of threads in

InnoDB(thread_concurrency, ranging from 100 to 1024), the maxi-

mum delay between polls for a spinlock(spin_wait_delay, ranging

from 0 to 128), how far down the LRU list a page cleaner thread

scans(lru_scan_depth, ranging from 0 to 256). To illustrate the ra-

tionale of generalizability, we manually construct a data repository.

We create five variations of Twitter by increasing the ratio of IN-

SERT queries gradually, namely𝑊1,𝑊2, ...,𝑊5, as shown in Table

5. For each variation, we conduct LHS sampling to collect 200 ob-

servations to fit the historical base-learner in the data repository.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2111

We also perform an 8 × 8 × 8 grid search as our known ground-

truth. Table 6 shows the knobs recommended by different methods

and corresponding CPU utilization. Figure 6(a) shows the tuning

process within 100 iterations. We discuss our key findings below.

I. ResTune optimizes the resource by balancing between database
performance and resource utilization. ResTune finds the best feasible
knobs among all the methods. We use SHAP [29], a game-theoretic

approach that connects optimal credit allocation with local expla-

nations to analyze the knobs’ influence. The SHAP path in Figure

7 explains how each of the recommended knobs helps to get from

the default value to the value ResTune outputs (current value). The

reduction of CPU usage from 75% to 11.25% is mainly due to set-

ting thread_concurrency and lru_scan_depth to 13 and 0. And the

setting of the two knobs help increase the throughput and decrease

the latency, while the setting of spin_wait_delay works oppositely.

The default value of thread_concurrency is zero, meaning unlimited

concurrency. ResTune sets thread_concurrency 13, which has the

largest effect for reducing the CPU utilization and improving the

performance, as the red arrow shown in the figure. Lower values

of thread_concurrency will reduce processors’ utility, and higher

values will cause performance downgrade due to increased con-

tention on resources, which highly depends on the workload and

the hardware environment. ResTune tunes spin_wait_delay to zero,

turning off the database’s busy polling on spinlocks. Polling on a

spinlock will constantly waste CPU time if the lock is held for a long

time. The closure of the busy loop saves CPU resources but reduces

the database performance. The blue arrow in the figure shows the

trade-off between database performance and CPU utilization. Last,

ResTune recommends lru_scan_depth to a value contributing to

database performance improvement to meet the SLA requirement.

II. ResTune’s workload characterization is effective. ResTune gener-
ates the meta-features of base-learners from workload characteriza-

tion, and their distances to target workload’s meta-feature are used

to calculate the weights. Since the historical workloads are made

by increasing the ratio of INSERT queries from the target workload,

we know the ground truth that𝑊1 is more similar to the target

workload than others. Take the throughput as an example, Figures

6(d) and 6(e) show that𝑊1 has the similar performance surface

with𝑊𝑇 . The static weights in Table 5 also show that the weight

of𝑊1 is the largest. To further dive into the effectiveness of work-

load characterization, we conduct an ablation study. We replace

ResTune’s workload characterization pipeline with LHS to generate

the first 10 observations, namely ResTune-w/o-Workload. Figure

6(b) shows that compared to ResTune-w/o-Workload, ResTune uti-

lizes the workload characterization to find good results faster.

III. ResTune generalizes to new tuning tasks by fine-tuning the
weights of base-learners. ResTune detects similar base-learners by

ranking loss and assigns them larger weights. Consequently, the

optimal regions of these base-learners are exploited with high prob-

ability. Table 5 presents the mean of ranking loss for the historical

base-learners, which is calculated as how many ranking pairs are

incorrectly ranked in the percentage of total pairs. Among the his-

torical base-learners,𝑊1 is most similar to the target, followed by

𝑊2 to𝑊5. For the target base-learner, its ranking loss decreases

gradually as it collects more observations of the target task. Figure

6(c) shows the weight assignment of ResTune in the first 50 iter-

ations. Within 25 iterations, similar historical base-learners have

larger weights. So base-learner𝑊1 indicates the optimal region,

accelerating the tuning process. With more target observations, the

target base-learner’s weight dominates, and overfitting is avoided.

ResTune outperforms other baselines and even the grid search, as

the search stepsize of grid search can be smaller.

7.4 Sensitivity Analysis
We illustrate the robustness of ResTune by varying the request rate

and varying the data size.

7.4.1 Varying Request Rate. We conduct eight experiments on op-

timizing CPU usage for SYSBENCH and TPC-C, respectively. For

SYSBENCH, we vary the request rate from 16000 to 23000. For

TPC-C, we vary the request rate from 1500 to 2200. Figure 8 shows

that ResTune could accomplish similar improvement regardless of

the request rate setting compared with the default configuration.

Surprisingly, we find that the knobs ResTune outputs under a cer-

tain request rate can be transferred to the setting with different

request rates, achieving similar improvement with the red line in

Figure 8. Note that if the request rate decreases further, the room

for optimization decreases since the CPU utilization is too low.

7.4.2 Varying data size. As Table 7 shows, we carry out 5 exper-

iments on optimizing CPU utilization for TPC-C workload with

different data sizes, by setting the number of warehouses. In each

experiment, CPU utilization drops significantly after tuning knobs.

It is worth noting that when the amount of data is small, the decline

in CPU utilization becomes smaller. This is because CPU resource is

limited in this scenario, and resource optimization problems cannot

be simply solved by tuning configuration knobs. It is recommended

to consider further increasing CPU resources. On the other hand,

when the amount of data is large, the decline in CPU utilization will

also decrease because of the lower hit ratio. Default CPU utilization

is also reduced accordingly. In this scenario, consider optimizing

memory-related knobs or increasing memory resources.

7.5 Tuning other types of Resources
In previous sections, we mainly focus on evaluating ResTune on

optimizing the CPU usage. The reason is that we found in the

majority of OLTP workloads in production, memory, and I/O are

usually not the bottleneck since the hot data are mostly cached.

But ResTune can be extended to optimize more resources. In this

section, we evaluate the performance of ResTune on optimizing the

I/O and thememory resources.We conduct experiments on instance

E, tuning SYSBENCH and TPC-C under the varying workloads
setting. We use the tuning observations on SYSBECNH as meta-

data in the data repository to tune TPC-C(SYSBENCH to TPC-C)

and vice versa(TPC-C to SYSBENCH). To mimic the I/O heavy

scenario, we fix the buffer pool size to 16G and initialize the data

with 100G for TPC-C (10000 warehouses), 30G for SYSBENCH

(150 tables, 100w records in each table). The hit ratio under the

default configuration is 93.2% for TPC-C and 97.5% for SYSBENCH.

We use the same workload setting for the memory experiment

since it is more challenging to reduce the memory resource in I/O

heavy cases. The only difference for memory experiments is that

we do not fix the buffer pool size and use it as a tuning knob. The

comparison methods are the same with CPU experiments, with

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2112

1.2

1.5K1.6K1.7K1.8K1.9K 2K 2.1K2.2K
Rate (txn/s)

0
25
50
75

100

Fe
as

ib
le

 C
PU

 (%
)

(a) TPC-C

16K 17K 18K 19K 20K 21K 22K 23K
Rate (txn/s)

60

80

100

Fe
as

ib
le

 C
PU

 (%
)

(b) Sysbench

Default ResTune

Figure 8: Sensitivity Analysis of Request Rate

Table 7: Sensitivity Analysis of Data Size
#Warehouses Size(GB) Hit Ratio Default CPU best CPU Improvement

100 7.29 0.996 90.21 58.51 35.13%

200 16.26 0.995 87.78 43.95 49.93%

500 35.26 0.991 88.60 40.48 50.77%

800 56.59 0.984 78.59 34.53 58.52%

1000 117.06 0.946 46.00 36.62 44.80%

0 50 100
Iteration

500

1000

1500

I/O
 (M

B/
s)

(a) SYSBENCH
0 50 100

Iteration

400

600

800

I/O
 (M

B/
s)

(b) TPC-C
0 50 100

Iteration

20K
40K
60K

I/O
 (O

pe
ra

tio
n/

s)

(c) SYSBNEHC
0 50 100

Iteration

20K

30K

I/O
 (O

pe
ra

tio
n/

s)

(d) TPC-C
0 50 100

Iteration

15
20
25
30

M
em

or
y

(G
B)

(e) SYSBENCH
0 50 100

Iteration

16

18

20

22

M
em

or
y

(G
B)

(f) TPC-C

Default ResTune OtterTune-w-Con ResTune-w/o-ML CDBTune-Con iTuned

Figure 9: Tuning Other Types of Resources

changing the objective from minimizing the CPU utilization to the

I/O and memory usage.

7.5.1 I/O. There are two important metrics that measure the I/O

utilization with different aspects. BPS(Bytes Per second) measures

the total bytes of read and write operations in each second. IOPS(I/O

operations per second) measures the number of invocations of

read and write operations in each second. We evaluate ResTune

by setting BPS and IOPS as objective, respectively, and tune 20

selected knobs. The first four figures in Figure 9 show the results.

We can see that ResTune reduces 60% - 80% of BPS under the default

configuration and reduce 84% - 90% of IOPS under the default

configuration and outperforms others.

7.5.2 Memory. We conduct two experiments by tuning 6 memory-

related knobs. Figure 9 shows that for TPC-C, ResTune reduces the

total memory usage of DBMS from 22.5G to 16.34G. For SYSBENCH,

ResTune reduces the total memory usage of DBMS from 25.4G to

12.64G, outperforming other baselines. Compared with ResTune-

w/o-ML, ResTune finds good configurations with 15 iterations,

showing the advantage of meta-learning.

7.6 TCO Analysis
To illustrate the benefit from cloud providers’ perspective, we esti-

mate the reduction of Total Cost of Ownership (TCO) using ResTune.

We focus on the RDS MySQL product and calculate corresponding

TCO reduction among AWS, Azure, and Aliyun using their online

calculators [3–5]. It is not easy to find the exact same instance type

of our experiments among all three cloud environments. Therefore,

we estimate the TCO reduction for each CPU and every GB of the

memory instead. For example, the 1-year-TCO for the RDS MySQL

in Aliyun of with 8 Core 16GB and 500G SSD storage is $4032 and

with 4 Core 16GB is $3852. So the TCO reduction per Core in Aliyun

is ($4032 − $3852)/4 = $45. We calculate the 1-year-TCO reduction

according to our previous experimental results. Table 8 shows the

detailed reduction of 1-year-TCO of two workloads from 6 different

instance types. The TCO reduction is averaged of the reductions

among AWS, Azure, and Aliyun. Table 9 shows the TCO reduction

Table 8: 1-year-TCO Reduction Optimizing CPU Usage
Workload InstanceAInstanceBInstanceCInstanceDInstanceEInstanceF

SYSBENCH

Original CPU 43 Cores 7 Cores 4 Cores 16 Cores 29 Cores 58 Cores

Optimized CPU 21 Cores 6 Cores 4 Cores 15 Cores 24 Cores 46 Cores

Avg TCO↓ $8,749 $398 $0 $398 $1,988 $4,772

TPCC

Original CPU 44 Cores 8 Cores 4 Cores 16 Cores 30 Cores 52 Cores

Optimized CPU 38 Cores 7 Cores 4 Cores 13 Cores 20 Cores 27 Cores

Avg TCO↓ $2,386 $398 $0 $1,193 $3,977 $9,942

Table 9: 1-year-TCO Reduction Optimizing Memory on Instance E
Original MEM Optimized MEM TCO↓(AWS) TCO↓(Azure) TCO↓(Aliyun)

SYSBENCH 25.4GB 12.64GB $983 $855 $2144

TPCC 22.5GB 16.34GB $475 $412 $1035

optimizing memory on instance E. Note that the originally used

resource might be less than the total resource of the instance, and

the reduced TCO is calculated based on the originally used resource.

We omit the TCO reduction of the I/O resource since not all online

calculators support customizing the IOPS/BPS.

8 CONCLUSION
We present ResTune to optimize resource utilization for cloud

databases automatically. By leveraging constrained Bayesian opti-

mization, ResTune can meet the SLA requirement and saving CPU,

memory, and I/O resources. To make tuning time acceptable for end-

users, ResTune implements a meta-learning approach to extract

experience from historical tuning tasks. ResTune can also be applied

across heterogeneous hardware environments. The evaluations on

benchmarks and real workloads show that ResTune can reduce 65%

of CPU, 87% of I/O and 39% of memory on average from the DBA

configuration. Comparing to the state-of-the-art systems, ResTune

can find better configurations and achieves up to ∼ 18× speedups

finding the configuration with the same resource utilization.

ACKNOWLEDGMENTS
This work is supported by National Natural Science Foundation

of China (NSFC)(No. 61832001), Alibaba Group through Alibaba

Innovative Research Program and National Key Research, and the

Beijing Academy of Artificial Intelligence.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2113

REFERENCES
[1] 2018. Amazon RDS Under the Hood. https://aws.amazon.com/blogs/database/

amazon-rds-under-the-hood-single-az-instance-recovery/.

[2] 2019. High AWS EC2 CPU utilization should be avoided. https://www.

cloudmanagementinsider.com/avoid-high-aws-ec2-cpu-utilization/.

[3] 2020. Alibaba Cloud Computing. https://www.alibabacloud.com/pricing-

calculator.

[4] 2020. Amazon Web Services (AWS). https://calculator.aws/#/.

[5] 2020. Microsoft Azure. https://azure.microsoft.com/en-us/pricing/tco/

calculator/.

[6] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.

Automatic Database Management System Tuning Through Large-scale Machine

Learning. In SIGMOD Conference. ACM, 1009–1024.

[7] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin

Letham, AndrewGordonWilson, and Eytan Bakshy. 2020. BoTorch: A Framework

for Efficient Monte-Carlo Bayesian Optimization. In NeurIPS.
[8] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michèle Sebag. 2013. Collab-

orative hyperparameter tuning. In ICML (2) (JMLR Workshop and Conference
Proceedings, Vol. 28). JMLR.org, 199–207.

[9] Sudipto Das, Vivek R. Narasayya, Feng Li, and Manoj Syamala. 2013. CPU sharing

techniques for performance isolation in multi-tenant relational database-as-a-

service. Proceedings of the VLDB Endowment 7, 1 (2013), 37–48.
[10] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-

Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational

Databases. Proc. VLDB Endow. 7, 4 (2013), 277–288.
[11] SongyunDuan, Vamsidhar Thummala, and Shivnath Babu. 2009. TuningDatabase

Configuration Parameters with iTuned. Proc. VLDB Endow. 2, 1 (2009), 1246–1257.
[12] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,

Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine

Learning. In NIPS. 2962–2970.
[13] Matthias Feurer, Benjamin Letham, and Eytan Bakshy. 2018. Scalable meta-

learning for bayesian optimization using ranking-weighted gaussian process

ensembles. In AutoML Workshop at ICML, Vol. 7.
[14] Jacob R. Gardner, Matt J. Kusner, Zhixiang Eddie Xu, Kilian Q. Weinberger, and

John P. Cunningham. 2014. Bayesian Optimization with Inequality Constraints.

In ICML (JMLRWorkshop and Conference Proceedings, Vol. 32). JMLR.org, 937–945.

[15] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. 2014. Bayesian Optimiza-

tion with Unknown Constraints. In UAI. AUAI Press, 250–259.
[16] Daniel Golovin, Benjamin Solnik, SubhodeepMoitra, Greg Kochanski, John Karro,

and D. Sculley. 2017. Google Vizier: A Service for Black-Box Optimization. In

KDD. ACM, 1487–1495.

[17] Djoerd Hiemstra. 2000. A probabilistic justification for using tf x idf term weight-

ing in information retrieval. Int. J. Digit. Libr. 3, 2 (2000), 131–139.
[18] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-

Based Optimization for General Algorithm Configuration. In LION (Lecture Notes
in Computer Science, Vol. 6683). Springer, 507–523.

[19] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automatic
Machine Learning: Methods, Systems, Challenges. Springer.

[20] Dean Jacobs and Stefan Aulbach. 2007. Ruminations on Multi-Tenant Databases.

In BTW (LNI, Vol. P-103). GI, 514–521.
[21] Yoon Kim, Yacine Jernite, David A. Sontag, and Alexander M. Rush. 2016.

Character-Aware Neural Language Models. In AAAI. AAAI Press, 2741–2749.
[22] Andreas Krause and Cheng Soon Ong. 2011. Contextual Gaussian Process Bandit

Optimization. In NIPS. 2447–2455.
[23] Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop

an AutoTuner for Memory-based Analytics. In SIGMOD Conference. ACM, 1667–

1683.

[24] Herbert K. H. Lee, Robert B. Gramacy, Crystal Linkletter, and Genetha A. Gray.

2011. Optimization Subject to Hidden Constraints via Statistical Emulation.

Pacific Journal of Optimization 7, 3 (2011).

[25] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. 2015. Metalearning: a

survey of trends and technologies. Artif. Intell. Rev. 44, 1 (2015), 117–130.
[26] Bofang Li, Aleksandr Drozd, Yuhe Guo, Tao Liu, Satoshi Matsuoka, and Xiaoyong

Du. 2019. Scaling Word2Vec on Big Corpus. Data Sci. Eng. 4, 2 (2019), 157–175.
[27] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware

Database Tuning System with Deep Reinforcement Learning. Proc. VLDB Endow.
12, 12 (2019), 2118–2130.

[28] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control

with deep reinforcement learning. In ICLR (Poster).
[29] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting

Model Predictions. In NIPS. 4765–4774.
[30] E. A. Nadaraya. 1964. On Estimating Regression. Theory of Probability and Its

Applications 9 (1964), 141–142.
[31] Carl Edward Rasmussen and Christopher K. I. Williams. 2006. Gaussian processes

for machine learning. MIT Press.

[32] Nicolas Schilling, Martin Wistuba, Lucas Drumond, and Lars Schmidt-Thieme.

2015. Hyperparameter Optimization with Factorized Multilayer Perceptrons. In

ECML/PKDD (2) (Lecture Notes in Computer Science, Vol. 9285). Springer, 87–103.
[33] Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme. 2016. Scalable

Hyperparameter Optimization with Products of Gaussian Process Experts. In

ECML/PKDD (1) (Lecture Notes in Computer Science, Vol. 9851). Springer, 33–48.
[34] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Fre-

itas. 2016. Taking the HumanOut of the Loop: A Review of Bayesian Optimization.

Proc. IEEE 104, 1 (2016), 148–175.

[35] Muhammad Bilal Sheikh, Umar Farooq Minhas, Omar Zia Khan, Ashraf Aboul-

naga, Pascal Poupart, and David J. Taylor. 2011. A bayesian approach to online

performance modeling for database appliances using gaussian models. In ICAC.
ACM, 121–130.

[36] Jasper Snoek. 2014. Bayesian Optimization and Semiparametric Models with

Applications to Assistive Technology.

[37] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian

Optimization of Machine Learning Algorithms. In NIPS. 2960–2968.
[38] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,

Michael Stonebraker, Ricardo Mayerhofer, and Francisco Jose Andrade. 2018.

P-Store: An Elastic Database System with Predictive Provisioning. In SIGMOD
Conference. ACM, 205–219.

[39] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin

Qiao, Yue Shi, Wei Cao, and Rui Zhang. 2019. iBTune: Individualized Buffer

Tuning for Large-scale Cloud Databases. Proc. VLDB Endow. 12, 10 (2019), 1221–
1234.

[40] Matthew E. Taylor and Peter Stone. 2009. Transfer Learning for Reinforcement

Learning Domains: A Survey. J. Mach. Learn. Res. 10 (2009), 1633–1685.
[41] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.

Auto-WEKA: combined selection and hyperparameter optimization of classifica-

tion algorithms. In KDD. ACM, 847–855.

[42] Martijn van Otterlo and Marco A. Wiering. 2012. Reinforcement Learning and

Markov Decision Processes. In Reinforcement Learning. Adaptation, Learning,
and Optimization, Vol. 12. Springer, 3–42.

[43] Joaquin Vanschoren. 2018. Meta-Learning: A Survey. CoRR abs/1810.03548

(2018).

[44] Ricardo Vilalta and Youssef Drissi. 2002. A Perspective View and Survey of

Meta-Learning. Artif. Intell. Rev. 18, 2 (2002), 77–95.
[45] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2015. Sequential

Model-Free Hyperparameter Tuning. In ICDM. IEEE Computer Society, 1033–

1038.

[46] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2016. Two-Stage

Transfer Surrogate Model for Automatic Hyperparameter Optimization. In

ECML/PKDD (1) (Lecture Notes in Computer Science, Vol. 9851). Springer, 199–214.
[47] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2018. Scalable

Gaussian process-based transfer surrogates for hyperparameter optimization.

Mach. Learn. 107, 1 (2018), 43–78.
[48] Dani Yogatama and Gideon Mann. 2014. Efficient Transfer Learning Method for

Automatic Hyperparameter Tuning. In AISTATS (JMLR Workshop and Conference
Proceedings, Vol. 33). JMLR.org, 1077–1085.

[49] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,

Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An

End-to-EndAutomatic CloudDatabase Tuning SystemUsingDeep Reinforcement

Learning. In SIGMOD Conference. ACM, 415–432.

[50] Wentao Zhang, Jiawei Jiang, Yingxia Shao, and Bin Cui. 2020. Snapshot boosting:

a fast ensemble framework for deep neural networks. Sci. China Inf. Sci. 63, 1
(2020), 112102.

[51] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue

Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConfig: tapping the perfor-

mance potential of systems via automatic configuration tuning. In SoCC. ACM,

338–350.

[52] Zainab Zolaktaf, Mostafa Milani, and Rachel Pottinger. 2020. Facilitating SQL

Query Composition and Analysis. In SIGMOD Conference. ACM, 209–224.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2114

https://aws.amazon.com/blogs/database/amazon-rds-under-the-hood-single-az-instance-recovery/
https://aws.amazon.com/blogs/database/amazon-rds-under-the-hood-single-az-instance-recovery/
https://www.cloudmanagementinsider.com/avoid-high-aws-ec2-cpu-utilization/
https://www.cloudmanagementinsider.com/avoid-high-aws-ec2-cpu-utilization/
https://www.alibabacloud.com/pricing-calculator
https://www.alibabacloud.com/pricing-calculator
https://calculator.aws/#/
https://azure.microsoft.com/en-us/pricing/tco/calculator/
https://azure.microsoft.com/en-us/pricing/tco/calculator/

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Problem Statement
	4 OVERVIEW OF RESTUNE
	5 SOLVING CONSTRAINED OPTIMIZATION
	5.1 Modeling Constrained Functions
	5.2 Guiding Search in Feasible Region

	6 BOOSTING TUNING PROCESS
	6.1 Scale Unification
	6.2 Workload Characterization
	6.3 Knowledge Extraction
	6.4 Base-Learner Evaluation

	7 EVALUATION
	7.1 Efficiency Comparison
	7.2 Evaluation on Generalization
	7.3 Case Study
	7.4 Sensitivity Analysis
	7.5 Tuning other types of Resources
	7.6 TCO Analysis

	8 CONCLUSION
	Acknowledgments
	References

