Eagle: Efficient Training-Free Router for Multi-LLM Inference

Abstract

The proliferation of Large Language Models (LLMs) with varying capabilities and costs has created a need for efficient model selection in AI systems. LLM routers address this need by dynamically choosing the most suitable model for a given query based on task requirements and budget constraints. However, existing routers face challenges in scalability and real-time adaptation, particularly in high-volume online environments. We present Eagle, a novel LLM routing approach that combines global and local ELO ranking modules to overcome these limitations. By evaluating both general and specialized LLM abilities, Eagle provides a scalable, training-free solution that enhances model selection quality while reducing computational overhead. Our experiments across multiple datasets show Eagle consistently outperforms baseline methods, with improvements of up to 23.52 percent in Area Under Curve (AUC) scores. Moreover, Eagle demonstrates remarkable efficiency, requiring only 1/20 of baseline methods’ time for initialization and 100 to 200 times faster incremental updates in online scenarios, making it well-suited for dynamic, high-volume online serving environments.

Publication
Workshop on ML for Systems at NeurIPS 2024
Shuowei Jin
Shuowei Jin
PhD Candidate at University of Michigan CSE

My research interests include efficient LLM inference algorithms/systems, machine learning systems, and mobile systems.